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1. Introduction 

In an increasingly computerized and networked world, it is crucial to develop defenses 
against malicious insider activity in information systems. One promising approach is to 
develop computer algorithms that detect insiders who are inappropriately intruding on the 
computers of others. However, intrusion detection is a difficult problem to solve 
[DARPA99]. System performance cannot be adversely affected, false positives must be 
minimized, and intrusions must be caught (i.e., false negatives must be very low). The 
current state of the art in intrusion-detection systems is not good; false positives are much 
too high and successful detection is unfortunately too rare. In this project we have made 
significant advances toward creating an intrusion-detection system that requires few CPU 
cycles (less than 1%), produces few false alarms (less than one per day), and detects most 
intrusions quickly (about 95% within five minutes). 

Intrusion-detection systems (IDS's) can either (a) look for known attack patterns or (b) be 
"adaptive software" that is smart enough to monitor and learn how the system is 
supposed to work under normal operation versus how it works when misuse is occurring 
[LUNT93]. We address approach (b) in this project. Specifically, we are empirically 
determining which sets of fine-grained system measurements are the most effective at 
distinguishing usage by the assigned user of a given computer from misusage by other 
"insiders" [DARPA99; NEUMANN99] within an organization. 

Building on our expertise in Windows 2000 computer security and machine learning, we 
have written and evaluated a prototype anomaly-detection system that creates statistical 
profiles of the normal usage for a given computer running Windows 2000. Significant 
deviations from normal behavior indicate that an intrusion is likely occurring. For 
example, if the probability that a specific computer receives 10 Mbytes/sec during 
evenings is measured to be very low, then when our monitoring program detects such a 
high transfer rate during evening hours, it can suggest that an intrusion may be occurring. 

The algorithm we have developed measures over two-hundred Windows 2000 properties 
every second, and creates about 1500 "features" out of them. During a machine-learning 
"training" phase, it learns how to weight these 1500 features in order to accurately 
characterize the particular behavior of each user - each user gets his or her own set of 
feature weights. Following training, every second all of the features "vote" as to whether 
or not it seems like an intrusion is occurring. The weighted votes "for" and "against" an 
intrusion are compared, and if there is enough evidence, an alarm is raised. (Section 2 
presents additional details about our IDS algorithm that are being glossed over at this 
point.) 

This ability to create statistical models of individual computer's normal usage means that 
each computer's unique characteristics serve a protective role. Similar to how each 
person's antibodies can distinguish one's own cells from invading organisms, these 
statistical-profile programs can, as they gather data during the normal operation of a 



computer, learn to distinguish "self behavior from "foreign" behavior. For instance, 
some people use Notepad to view small text files, while others prefer WordPad. Should 
someone leave their computer unattended and someone else try to inappropriately access 
their files, the individual differences between people's computer usage will mean that our 
statistical-modeling program will quickly recognize this illegal access. 

We evaluate the ability to detect insider misuse by collecting data from multiple 
employees of Shavlik Technologies, creating user profiles by analyzing "training" 
subsets of this data, and then experimentally judging the accuracy of our approach by 
predicting whether or not data in "testing sets" is from the normal user of a given 
computer or from an intruder. The key scientific hypothesis investigated is whether or 
not creating statistical models of user behavior can be used to accurately detect insider 
abuse. We focus our algorithmic development on methods that produce very low false- 
alarm rates, since a major reason system administrators ignore IDS systems is that they 
produce too many false alarms. 

Our empirical results suggest that it is possible to detect about 95% of the intrusions with 
less than one false alarm per (8 hr) day per user. It should be noted, though, that these 
results are based on our model of an "insider intruder," which assumes that when Insider 
Y uses User JCs computer, that Y is not able to alter his or her behavior to explicitly 
mimic A"s normal behavior. The training phase our approach can be computationally 
intensive due to some parameter tuning, but this parameter tuning could be done on a 
central server or during the evenings when users are not at work. The CPU load of our 
IDS is negligible during ordinary operation; it requires less than 1% of the CPU cycles of 
a standard personal computer. Our approach is also robust to the fact that users' normal 
behavior constantly changes over time. 

Our approach can also be used to detect abnormal behavior in computers operating as 
specialized HTTP, FTP, or email servers. Similarly, these techniques can be used to 
monitor the behavior of autonomous intelligent software agents in order to detect rogue 
agents whose behavior is not consistent with the normal range of agent behavior for a 
given family of tasks.   However, the experiments reported herein only involve computers 
used by humans doing the normal everyday business tasks.    While we employ the word 
"user" throughout this report, the reader should keep in mind that, except for the 
technique and experiments involving typing patterns (Section 4), our approach applies 
equally well to the monitoring of servers and autonomous intelligent agents. All that 
would be needed to apply our approach to a different scenario would be to define a set of 
potentially distinctive properties to measure and to write code that measured these 
properties periodically. 

Previous empirical studies have investigated the value of creating intrusion-detection 
systems by monitoring properties of computer systems, an idea that goes back at least 20 
years [ANDERSON80]. However, prior work has focused on Unix systems, whereas over 
90% of the world's computers run some variant of Microsoft Windows. In addition, prior 
studies have not looked at as large a collection of system measurements as we use.  For 
example, Warrender et al. [WARRENDER99], Ghosh et al. [GOSH99], and Lane and Brodley 



[LANE98] only look at Unix system calls, whereas Lee et al. [LEE99] only look at audit 
data, mainly from the TCP program. 

In Section 2 we describe the algorithm we developed that analyzes the Windows 2000 
properties that we measure each second, creating a profile of normal usage for each user. 
Section 3 presents and discusses empirical studies that evaluate the strengths and 
weaknesses of this algorithm, stressing it along various dimensions such as the amount of 
data used for training. This section also lists which Windows 2000 properties end up 
with the highest weights in our weighted-voting scheme. Section 4 reports some 
additional experiments we performed that monitor keystroke data in order to identify 
users, which we can also do accurately while generating few false alarms. Section 5 
describes possible future follow-up research tasks, and Section 6 concludes this final 
project report. 

2. Algorithm Developed 

In this section we describe the primary algorithm that we developed in the course of this 
project. Arguably our key finding is that a machine-learning algorithm called Winnow 
[LITTLESTON88], a weighted-majority type of algorithm, works very well as the core 
component of our IDS. 

This algorithm operates by taking weighted votes from a pool of individual prediction 
methods, continually adjusting these weights in order to improve accuracy. In our case, 
the individual predictors are the Windows 2000 properties that we measure, where we 
look at the probability of obtaining the current value and comparing it to a threshold. 
That is, each measurement suggests that an intrusion may be occurring if: 

Prob (measured property has value v)   <   p [Eq. 1] 

Each property we measure votes as to whether or not an intrusion is currently occurring. 
When the weighted sum of votes leads to the wrong prediction (intrusion vs. no 
intrusion), then the weights of all those properties that voted incorrectly are halved. 
Exponentially quickly, those properties that are not informative end up with very small 
weights. Besides leading to a highly accurate IDS, the Winnow algorithm allows us to 
see which Windows 2000 properties are the most useful for intrusion detection, namely 
those properties with the highest weights following training (as we shall see, when 
viewed across several users, a surprisingly high number of properties end up with high 
weights). 

Before presenting our algorithm that calls as subroutine the Winnow algorithm, we 
discuss how we make "features" out of the over two-hundred Windows 2000 properties 
that we measure. Technically, it is these 1500 or so features that do the weighted voting. 



2.1 Features Used 

Appendix A lists and briefly describes all of the Windows 2000 properties that we 
measure; some relate to network activity, others to file accesses, some to the CPU load, 
and others to the identity of the programs currently running. For each of the 
measurements described in Appendix A, we also derive several additional measurements: 

Actual Value Measured 
Average of the Previous 10 Values 
Average of the Previous 100 Values 
Difference between Current Value and Previous Value 
Difference between Current Value and Average of Last 10 
Difference between Current Value and Average of Last 100 
Difference between Averages of Previous 10 and Previous 100 

As will be seen in our experiments, these additional "derived" features play an important 
role; without them intrusion-detection rates are significantly lower. For the remainder of 
this report, we will use the term "feature" to refer the combination of a measured 
Windows 2000 property and one of the seven above transformations. In other words, 
each Windows 2000 property that we measure produces seven features. (The first item in 
the above list is not actually a derived feature; it is the "raw" measurement but we include 
it in the above list for completeness.) 

For one of the experiments described below, we also use four more derived 
measurements: 

Average of the Previous 1000 Values 
Difference between Current Value and Average of Last 1000 
Difference between Averages of Previous 10 and Previous 1000 
Difference between Averages of Previous 100 and Previous 1000 

2.2 Our IDS Algorithm 

Table 1 contains the algorithm that is the primary contribution of this project. We take a 
machine-learning [MITCHELL97] approach to creating an IDS, and as is typical we divide 
the learning process into three phases. First, we use some training data to create a 
model; here is where we make use of the Winnow algorithm (see Table 2). Next, we use 
some more data, called the tuning set, to "tune" some additional parameters in our IDS. 
Finally, we evaluate how well our learned IDS works be measuring its performance on 
some testing data. We repeat this process for multiple users and report the average test- 
set performance in our experiments. 

The Windows 2000 properties that we measure are continuous-valued, and in Step lb of 
Table 1 we first decide how to discretize each measurement into 10 bins; we then use 
these bins to create a discrete probability distribution for the values for this feature. 
Importantly, we do this discretization separately for each user, since this way we can 
accurately approximate each user's probability distribution with our 10 bins. (We did not 
experiment with values other than 10 for the number of bins.) 



We always place the value 0.0 in its own bin, since it occurs so frequently. We then 
choose the "cut points" that define the remaining bins by fitting a sample of the 
measurements produced by each user to each of several standard probability 
distributions: uniform, Gaussian, and Erlang (for k ranging from 1 to 100).   When k = 1 
the Erlang is equivalent to the better known ("decaying") Exponential distribution, and as 
k increases the distribution looks more and more like a Gaussian. We then select the 
probability distribution that best fits the sample data, and create our 10 bins as follows: 

For the uniform probability distribution, we uniformly divide the interval 
[minimum value, maximum value] into seven bins, and use the two 
remaining bins for values less than the minimum and greater than the 
maximum (since values encountered in the future might exceed those we 
have seen so far). 

For the Gaussian probability distribution, we place the lowest 0.005% of the 
probability mass in the first bin, the next 0.1% in the second bin, 5% in the 
next bin, and 15% in the bin after that. We do the same working down from 
the highest value, which leaves about 60% for the middle bin (60% is 
roughly one standard deviation around the mean of a Gaussian). 

For the Exponential probability distribution, we put half the probability mass 
in the first bin, and then half of the remaining probability mass in each 
successive bin. 

For the Erlang probability distribution, we execute a combination of what we 
do for the Gaussian and the Exponential, depending on the value of k. 

Most of our features are best modeled by Gaussians, with the Exponential distribution 
being the second most common selection. One final point about converting to a discrete 
probability distribution needs to be mentioned: for those Windows 2000 measurements 
that vary over orders of magnitude (e. g., bytes sent per second), we use the log of 
their values. 

After we have discretized our features, we simply count how often in the training data did 
a feature value fall into a given bin, thereby producing a probability distribution (after 
normalizing by the total number of counts). Following standard practice, we initialize all 
bins with a count of 1; this ensures that we will never estimate from our finite samples a 
probability of zero for any bin.   We are now able to estimate the 
Prob (feature = measured value) that was mentioned earlier in Eq. 1. 

We next turn to discuss using these probabilities to learn models for distinguishing the 
normal user of a given computer from an intruder. Ideally we would use training data 
where some UserXprovided the examples of normal (i. e., non-intrusion) data and we 
had another sample of data measured during a wide range of intrusions on this user's 
computer. However, we do not have such data (this is a problem that plagues IDS 
research in general), and so we use what is a standard approach, namely we collect data 
from several users (in our case, 10), and we then simulate intrusions by replaying User 
Y's measurements on User A" s computers. We say that a false alarm occurs when User 



X*s recent measurements are viewed as anomalous - that is, suggestive of an intrusion - 
when replayed on his or her own computer. A detected intrusion occurs when we view 
User Fs measurements as being anomalous when evaluated using X's feature 
discretization and feature weighting. (Notice that we need to use X* s discretization, 
rather than Fs, since we are assuming that Yis operating onA"s computer.) 

Table 2's version of Littlestone's Winnow algorithm is used to choose weights on the 
features we measure. This algorithm is quite simple, yet has impressive theoretical 
properties [LITTLESTONE88] and practical success on real-world tasks, especially those 
that have a very large number of features, which is the case for our project. As already 
mentioned, this algorithm sums weighted votes "for" and "against" the possibility that an 
intrusion is currently occurring. When the winning choice (i. e., "for" or "against") is 
wrong, then all those features that voted for the wrong choice have their weights halved. 
We perform the Winnow algorithm for each user, in each case using a 50-50 mixture of 
examples, with half drawn from this user's measured behavior (the "against an intrusion" 
examples) and half randomly drawn from some other user in the experiment (the "for an 
intrusion" examples). 

In order to raise an alarm after the training phase (Step 1 in Table 1) has set the feature 
weights, our algorithm does not simply use the current weighted vote. Instead, the 
current weighted vote can raise what we call a mini alarm, and we require that there be at 
least N mini alarms in the last W seconds in order to raise an actual alarm (see Steps 2b 
and 2c in Table 1). As will be seen in Section 3, W needs to be on the order of 100 to get 
good detection rates with few false alarms. 

We choose the settings for our parameters on aper-user basis by evaluating performance 
on a set of tuning data - see Step 2 of Table 1. One significant advantage of a data- 
driven approach like ours is that we do not have to pre-select parameter values. Instead, 
the learning algorithm selects for each user his or her personal set of parameter values, 
based on the performance of these parameters on a substantial sample of "tuning set" 
data. 

The only computationally demanding portion of our algorithm is the parameter-tuning 
phase, which depends on how many parameter combinations are considered and on how 
much tuning data each combination is evaluated. In a fielded system, it might make 
sense to do this step on a central server or during the evenings. The other tasks of 
measuring features, computing weighted sums, and using Winnow to adjust weights can 
all be done very rapidly. Outside of the parameter tuning, Table 1 's algorithm requires 
less than 1% of a desktop computer's CPU cycles. 

Notice that even during the testing phase (e. g., Step 3 in Table 1), we find it necessary to 
still execute the Winnow algorithm, to adjust the weights on the features after our 
algorithm decides whether or not an intrusion occurred. If we do not do this, we get too 
many false alarms when the user's behavior switches and the intrusion-detection rates 
drops to 20% from about 95%. On the other hand continually adjusting weights means 
that if we miss an intrusion we will start learning the behavior of the intruder, which is a 



Table 1.  Algorithm Description: Creating and Maintaining an IDS for User X 

Step 1: Initial Training 

Step la: Collect measurements from User Xfor JV days and place in TRAINSET. 

Step lb: Using TRAINSET, choose good "cut points" (for User X) to discretize 
continuous values. See text for further explanation. 

Step lc: Select weights for User A"s measured features by applying the 
Winnow algorithm (see Table 2 and accompanying text) using TRAINSET 
and an equal number of "archived" sample measurements from other users 
However, be sure to discretize the measurements from the other users 
by applying User^Vs cut points, since we will be pretending that the 
other users are inappropriately using Xs computer. 

Step 2: Parameter Tuning 

Step 2a: While collecting measurements from User X for M additional days, 
perform Steps 2b and 2c, calculating./ä/.se-a/a/7w and intrusion-detection 
rates in conceptually independent runs for as many as possible combinations 
of the parameters being tuned: W, threshold™™ and threshold^. 

Step 2b: Use the weighted features to "vote" on "mini-alarms" each second; 
if(weightedVotesFoR/weightedVotesAGAiNST) > threshold,™ 
then raise a mini-alarm. See Steps 2a and 2b of Table 2. 

Step 2c: If the number of mini-alarms in the last W seconds ä threshold^ 
then raise an alarm signal that an intrusion might be occurring. 

Step 2d: Apply the Winnow algorithm to the data collected during 
the previous W seconds. This allows the feature-weighting algorithm to 
track changes in User Xs computer usage over time. (Our experiments 
demonstrated that if we do not continually learn, the system's 
performance is substantially reduced.) 

Notice that our methodology is fair in that we do not perform the 
learning step until after we have made a decision regarding whether 
or not to sound an alarm. For example, in a fielded system, User A' 
might need to reauthenticate him or herself after an alarm is raised, and 
only after a successful reauthentication should the Winnow 
algorithm be invoked. 

Step 2e: Assuming the desired maximum false-alarm rate is P per (8-hour) day, 
choose the parameter settings that produce the highest intrusion- 
detection rate on the set of sample "other" users, while not producing 
more than the desired number of false alarms for User X. 

Step 3: Continual Operation 

Using Step 2e's chosen settings for W, thresholdmini and thresholds, 
repeat Steps 2b through 2d forever.   (It might make sense to periodically 
reselect good parameter settings, say once a month. However, we did not 
evaluate doing so in the experiments we report herein.) 



Table 2.  The Winnow Algorithm 

Step 1: Initialize User X's weights on each feature measured to 1. 

Step 2: For each training example do: 

Step 2a: Set weightedVotesFOR = 0 and weightedVotesAGAiNST= 0. 
Step 2b: If then probability of the current measured value for feature/ < p, 

then add weightf to weightedVotesFOR 
otherwise add weightf to weightedVotesAGAiNST- 

I.e., if the probability of the current value of feature/is "low," 
then this is evidence that something anomalous is occurring. 
(In our experiments, we found that/? = 0.15 was a good setting; 
however, overall performance was robust in regards to the value 
of p. Various values tried between 0.05 and 0.75 all worked well.) 

Step 2c: If weightedVotesFoR > weightedVotesAGAiNST 
then call the current measurements anomalous. 

Step 2d: If User X produced the current measurements and they were considered 
anomalous, then & false-alarm error has been made. 
Multiply by lA all those features that incorrectly voted/?/- raising an alarm. 

Otherwise if some other user produced the current measurements and they 
were not considered anomalous, then a missed-intrusion error has been made. 
Multiply by Vi all those features that incorrectly voted against raising an alarm. 

When neither a false-alarm nor a missed-intrusion error occurred, leave the 
current weight unchanged. 

weakness of our approach (and a weakness of statistics-based approaches for intrusion 
detection in general). This also means that the empirical results reported in the next 
section should properly be interpreted as estimating the probability that we will detect an 
intruder after his or her first W seconds of activity. A subject for future work is to 
empirically evaluate how likely our approach will detect an intruder in the second (and 
successive) W seconds of activity, given we did not detect the intruder in the first W 
seconds. On the other hand, the fact that we continually are adjusting the weights means 
that after the legitimate user reauthenticates him or herself after a false alarm, our 
algorithm will adapt to the change in the user's behavior. 

Obviously there is a delicate balance between adapting quickly to changes in the 
legitimate user's behavior, and thus reducing false alarms, and adapting too quickly to the 
activity of an intruder and thus thinking the intruder's behavior is simply a change in the 
behavior of the normal user of the given computer and thereby missing actual intrusions. 
It is a simple fact of life that most users' behavior is wide ranging and changing over 
time. The more consistent a user's behavior is, and the more accurately we can capture 
his or her idiosyncrasies, the better our approach will work. 



3. Experimental Evaluation 

This section reports our experimental evaluation of the algorithm in Table 1. We first 
describe our experimental methodology, then follow that with experimental results and 
associated discussion. 

When reading the empirical results in this section, it should be remembered that there can 
be a several percentage points of variation across various experimental runs, due to 
changes in parameter settings, as well as the sizes and particular contents of the training, 
tuning, and testing sets used.   Differences of a couple of percentage points in detection 
rates should not be interpreted as significant, but rather as suggestive. A large-scale 
experiment would be needed to reliably estimate, say, 95%-confidence intervals on the 
detection rates. Also, except in one curve (Figure 1), we do not report the false-alarm 
rates associated with the intrusion-detection rates. Instead, we only report scenarios 
where the false-alarm rate is less than one per work day per user, a number we choose as 
our design specification. Often the actual false-alarm rates on the testing sets are as low 
as one every 5-7 days, especially for larger values of Table l's parameter W. 

It is also very important to remember that all the results reported in this section are 
measured on testing data that is not used during the training and tuning process. In all 
cases we get zero false-alarm rates on the tuning data, as well as higher intrusion- 
detection rates. It is considered a "fatal flaw" in machine-learning research to report (as 
representative of future accuracies) the results on data used during the training and 
parameter-tuning processes, since it is relatively easy to get unrealistically high 
accuracies when one has the freedom to adjust parameters. What is important is the 
performance an. future data, and the results on the testing data provides what is called an 
"unbiased" (i. e., fair) estimate since these results are obtained after all the parameters in 
the learning system have been set. 

3.1       Methodology 

We collected about 8 GB of data from 16 employees of Shavlik Technologies who 
volunteered to be experimental subjects. Recall that Appendix A describes those system 
properties that we measure once every second. Of these 16 experimental subjects, we use 
the 10 from whom we have the most data as our pool of "insiders," i.e., they are intended 
to represent a small department of co-workers. We use these 10 during training (Steps 1 
and 2 of Table 1); for each one, we train an IDS to recognize the differences in behavior 
ofthat user from the other 9 users. The remaining 6 subjects, for whom we have a total 
of about 50 work days of measurements, serve as simulated "external" intruders, i.e., 
users whose computer-usage behavior has not been seen before - these 6 experimental 
subjects are only used during the testing phase (Step 3 of Table 1) and are never used 
during the training and tuning phases. Hence, one expects that these 6 "outsiders" would 
be harder to recognize as intruders on User X's computer since their behavior is not 
observed while the IDS's are still learning. 



In all of our experiments we only use data measured between 9am and 5pm on weekdays 
(i.e., Monday-Friday). For each of the 10 "insiders," we divided their data into disjoint 
training (Step 1 of Table 1), tuning (Step 2 of Table 1), and testing (Step 3 of Table 1) 
sets, with at least two weeks of data in each of these three sets. (Also, for each user all 
the training data was measured earlier than all of the tuning and testing data, and all of 
the tuning data was measured earlier than all of the testing data. In other words, each 
subject's three datasets are not temporally intermingled.) 

3.2      Basic Results and Discussion 

Figure 1 shows, as a function of W (see Table 1) the detection and false-alarm rates for 
the scenario where the training lasts 15 work days (15x8x60x60 = 432,000 seconds), 
and the tuning, and testing periods each last 10 work days (288,000 seconds).   This 
scenario involves a five-week-long training process, but as presented in Section 3.3 
shorter training periods produce results nearly as good. 

The results are averages over the 10 "insiders;" that is, each of these 10 experimental 
subjects is evaluated using the other 9 subjects as "insider intruders" and the above- 
described 6 "outsider intruders," and the 10 resulting sets of false-alarm and detection 
rates are averaged to produce Figure 1. During the tuning phase of Table 2, the specified 
false-alarm rate of Step 2e was set to 0; such a extreme false-alarm rate could always be 
produced on the tuning set, though due to the fact we are able to explicitly fit our 
parameters only to the tuning data, a false-alarm rate of zero did not result during the 
testing rate (as one expects). For W = 60 sec we are not able to consistently achieve our 
goal of no more than one false alarm per day per user on the testing data when tuning 
Table 1 's parameter thresholdmini, so we fixed thresholdmini= 1 for W = 60 sec. We 
further discuss over fitting (getting much higher accuracies on the tuning data than on the 
testing data due to having too many "degrees of freedom" during the tuning phase), in 
Section 3.3. Over fitting is arguably the key issue in machine learning. 

One potentially confusing technical point needs to be clarified at this point. In an eight- 
hour work day, there are 480 sixty-second-wide windows (i. e., W = 60) but only 48 six- 
hundred-second-wide (W = 600) ones. So one false alarm per day for W = 60 sec 
corresponds to a false-alarm rate of 0.2% whereas for W = 600 sec a false-alarm rate of 
2.1% produces one false-alarm per day on average. The (lower) dotted line in Figure 1 
shows the false-alarm rate that produces one false alarm per day per user.  As can be 
seen after some thought, as W increases the actual number of false alarms per day 
decreases. Conversely, as W increases an intruder is able to use someone else's 
computer longer before being detected. 
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Figure 1. False Alarm and Detection Rates on Test-Set Data 
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As can be seen in Figure 1, for a wide range of window widths (from 1 to 20 minutes), 
the false-alarm rates are very low - always less than one per eight-hour work day per user 
- and the intrusion-detection rates are impressively high, nearly 95%. Interestingly, the 
detection rate for "outsiders," whose behavior is never seen during training, is 
approximately the same as for "insiders." This suggests that our learning algorithm is 
doing a good job of learning what is characteristic about User X, rather than just 
exploiting idiosyncratic differences between User X and the other nine "insiders." 

Based on Figure 1, 300 seconds is a reasonable setting for W in a fielded system, and in 
most of the subsequent experiments in this section use that value. 

(It should be noted that going down to W = 60 sec in Figure 1 is not completely 
appropriate. Some of the features we use are averages of a given measurement over the 
last 100 seconds, as explained earlier in this report. In all of our experiments, we do not 
use any examples where the user's computer has not been turned on for at least 100 
seconds. Hence, when we replay a 60-second window of activity from User Y on User 
Xs computer, there is some "leakage" of User Fs data going back 100 seconds. In a 
fielded system, 40 seconds worth of the data would actually be from User X and 60 
seconds from User Y. However, our experimental setup does not currently support such 
"mixing" of user behavior. Should a fielded system wish to use W=60 sec, a simple 
solution would be to average over the last 60 seconds, rather than the last 100 seconds as 
done in our experiments. We do not expect the impact of such a change to be significant. 
The data point for W = 10 sec in Figure 1 only uses features that involve no more than 
the last 10 seconds of measurements, as a reference point - the issue of using less or more 
than the last 100 seconds of measurements is visited in more depth in the next section.) 
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To produce Figure 1 's results, Table 2's tuning step considered 11 possible settings for 
thresholds (0.8, 0.85, 0.90, 0.95, 0.97,1.0,1.03, 1.05,1.1,1.15, and 1.2) and 26 for 
threshold^ (0.01, 0.25, 0.5, 0.75, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, 0.99, and 1.0), that is 11x26=286 
different combinations of these two parameters. We did not experiment with different 
choices for the particular values and number of the candidate parameter settings, except 
as explained in some configurations where we found it necessary to restrict 
thresholdmini= 1.0, which is the case in Figure 1 for W = 10 sec and W = 60 sec. 

Table 3 shows the highest-weighted features at the end of one experiment, where the 
weights are averaged over all ten of our experimental subjects and over those values for 
W > 10 used to create Figure 1; for each experimental subject and setting for W, we 
normalize the weights so that they sum to 1, thus insuring that each configuration 
contributes equally. Remember that the weights are always changing, so this table should 
be viewed as a representation "snapshot." (Appendix A contains additional explanations 
of several of these features). Observe that a wide range of features appear in Table 3: 
some relate to network traffic, some measure file accesses, others refer to which 
programs are being used, while others relate to the overall load on the computer. It is 
also interesting to notice that for some features their average values over 100 seconds are 
important, whereas for others their instantaneous values matter, and for still others what 
is important is the change in the feature's value. Appendix B displays another list of the 
highest-weighted features, this time for one specific user. 

A weakness of Table 3 is that a measured Windows 2000 property that is important for 
only one or two subjects might not have a very high average weight. Table 4 provides a 
different way to see which features play important roles. To produce this table we count 
how often each measured property appears in the Top 10 weights (including ties, which 
are common, as can be seen in Appendix B) following training. Surprisingly, over half of 
the Windows 2000 properties we measure appear at least once in some Top 10 list! This 
supports our thesis that one should monitor a large number of system properties in order 
to best create a behavioral model that is well tailored to each individual computer user. 

Most of the "derived" calculations (see Section 2.1) are used regularly in the highly 
weighted features, with the exception of "Difference from Previous Value," which 
appears in the Top 50 weighted features only about l/20th as often as the others. 
"Difference between Current and Average of Last 10" is the most used, but the 
difference between the most used and the ö^-most used is only a factor of two. 
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Table 3.  Features with the 35 Highest Weights Averaged Across the 
Experiments that Produced Figure 1 

Print Jobs,   Average of  Previous  100 Values   (ranked #1) 
Print Jobs,   Average of Previous 10 Values 
System Driver Total Bytes,  Actual Value Measured 
Logon Total,  Actual Value Measured 
Print Jobs,   Actual Value Measured 
LSASS:   Working Set,   Average of  Previous  100 Values 
Number of Semaphores,  Average of Previous 100 Values 
Calc: Elapsed Time, 
Difference between Averages of Prev 10 and Prev 100 

Number of Semaphores, Actual Value Measured 
LSASS: Working Set, Average of Previous 10 Values 
CMD: Handle Count, 
Difference between Current and Average of Last 10 

CMD: Handle Count, Average of Previous 10 Values 
Write Bytes Cache/sec, 

Difference between Current and Average of Last 10 
Excel: Working Set, 
Difference between Current and Average of Last 10 

Number of Semaphores, Average of Previous 10 Values 
CMD: % Processor Time, 

Difference between Averages of Prev 10 and Prev 100 
LSASS: Working Set, Actual Value Measured 
System Driver Total Bytes, Average of Previous 100 Values 
CMD: % Processor Time, 
Difference between Current and Average of Last 100 

CMD: % Processor Time, 
Difference between Current and Average of Last 10 

System Driver Resident Bytes, Actual Value Measured 
Excel: Handle Count, Average of Previous 10 Values 
Errors Access Permissions, 
Difference between Current and Average of Last 10 

File Write Operations/sec, Average of Previous 100 Values 
System Driver Resident Bytes, Average of Previous 10 Values 
System Driver Total Bytes, Average of Previous 10 Values 
System Driver Resident Bytes, 
Difference between Current and Average of Last 10 

TCP Connections Active, Average of Previous 100 Values 
CMD: Working Set, 
Difference between Averages of Prev 10 and Prev 100 

CMD: Handle Count, 
Difference between Current and Average of Last 100 

Number of Mutexes, 
Difference between Current and Average of Last 10 

System Driver Resident Bytes, Average of Previous 100 Values 
SYSTEM: Working Set, 

Difference between Current and Average of Last 10 
LSASS: % Processor Time, 
Difference between Current and Average of Last 100 

Outlook: Handle Count, Average of Previous 100 Values 
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Table 4.  Measurements with the Highest Number of Occurrences in the Top 10 
Weights, Including Ties, in the Experiments that Produced Figure 1 
(the numbers in parentheses are the percentages of Top 10 appearances) 

Number of Semaphores (43%) 
Logon Total (43%) 
Print Jobs (41%) 
System Driver Total Bytes (39%) 
CMD: Handle Count (35%) 
System Driver Resident Bytes (34%) 
Excel: Handle Count (26%) 
Number of Mutexes (25%) 
Errors Access Permissions (24%) 
Files Opened Total (23%) 
TCP Connections Passive (23%) 
LSASS: Working Set (22%) 
LSASS: % Processor Time (22%) 
SYSTEM: Working Set (22%) 
Notepad: % Processor Time (21%) 
CMD: Working Set (21%) 
Packets/sec (21%) 
Datagrams Received Address Errors (21%) 
Excel: Working Set (21%) 
MSdev: Working Set (21%) 
Server Reconnects (19%) 
MSdev: Handle Count (19%) 
Write Bytes Cache/sec (18%) 
TCP Connections Active (18%) 
Write Packets/sec (17%) 
UDP Datagrams no port/sec (17%) 
WinWord: Working Set (17%) 
File Write Operations/sec (16%) 
Bytes Received/sec (16%) 
Bytes Transmitted/sec (16%) 
Read Bytes Paging/sec (16%) 
Write Bytes Paging/sec (16%) 
Notepad: Elapsed Time (16%) 
Powerpnt: Working Set (16%) 
File Read Bytes/sec (15%) 
File Control Operations/sec (15%) 
Packets Received/sec (15%) 
TCP Connections Established (15%) 
MSaccess: Working Set (15%) 
Notepad: Handle Count (15%) 
Calc: Elapsed Time (15%) 
Bytes Printed/sec (15%) 
CMD: % Processor Time (15%) 
SYSTEM: Handle Count (15%) 
% Total Interrupt Time (14%) 

WinWord: Handle Count (13%) 
AcroRd32: Elapsed Time (13%) 
Outlook: Handle Count (13%) 
MSdev: % Processor Time (13%) 
TASKMGR: Elapsed Time (13%) 
WinZip32: Elapsed Time (13%) 
Outlook: Handle Count (13%) 
MSdev: % Processor Time (13%) 
TASKMGR: Elapsed Time (13%) 
WinZip32: Elapsed Time (13%) 
Number of Threads (12%) 
Number of Sections (12%) 
% Physical Memory In Use (12%) 
Server Disconnects (12%) 
Read Bytes Network/sec (11%) 
Number of Open Windows (11%) 
File Write Bytes/sec (11%) 
% Virtual Memory In Use (11%) 
ICMP Messages Received/sec (11%) 
ICMP Messages Sent/sec (11%) 
Outlook: Working Set (11%) 
Explorer: Handle Count (11%) 
Excel: % Processor Time (10%) 
Files Open (10%) 
ICMP Messages/sec (10%) 
MSaccess: Handle Count (10%) 
Realplay: Elapsed Time (10%) 
Errors Logon (8%) 
Number of Processes (7%) 
Disk Read Bytes/sec (7%) 
Outlook: Elapsed Time (7%) 
Read Bytes Cache/sec (7%) 
UDP Datagrams Sent/sec (7%) 
Powerpnt: % Processor Time (7%) 
FTP: Handle Count (7%) 
UDP Datagrams Received/sec (6%) 
WinWord: % Processor Time (6%) 
msimn: Handle Count (6%) 
msimn: Working Set (6%) 
Open Top-Level Windows (5%) 
Number of Events (5%) 
Notepad: Working Set (5%) 

plus another 27 measurements that 
appeared at least once in the list of 
top 10 highest weights 

14 



3.3     Additional Results and Discussion 

In this section we report and discuss experiments involving several variations of our basic 
approach. 

Impact of Using Relative Probabilities in the Winnow Algorithm 

Recall that in Table 2's Winnow algorithm features "vote" whether or not to sound a 
(mini)alarm based on the probability of their current value. If this probability is less than 
some constant/? (we found/» = 0.15 works well), then the feature votes to sound an 
alarm. We have also explored using a variant of this idea. Specifically, we look at the 
ratio: 

prob(feature=value for this user) / prob(feature=value for the general population) [Eq. 2] 

An alarm is sounded if this ratio is less than some constant, r (we found r = 0.33 works 
well, though just like for/?, performance appears to be robust to the exact setting of this 
parameter - values for r between 0.25 and 0.75 that we tried worked about the same). 

The idea behind using the above ratio is that it focuses on feature values that are rare for 
this user relative to their probability of occurrence in the general population. For 
example, feature values that are rare for User X but also occur rarely across the general 
population may not produce low ratios, while feature values that are rare for User Xhv\ 
are not rare in general will. That is, this ratio distinguishes between "rare for User Xand 
for other computer users as well" and "rare for User X but not rare in general." 

We estimate probability(feafi/re=va/ue for the general population) by simply 
pooling all the data from the ten "insider" experimental subjects, and then creating a 
discrete probability distribution using ten bins, using the technique explained earlier. 
Doing this in a fielded system would be reasonable, since in our IDS design one already 
needs a pool of users for the training and tuning phases. 

Figure 2 reports the test-set results of using the two different ways of deciding when to 
raise an alarm. When using individual probabilities and the threshold/? we say we are 
using "absolute" probabilities and when we are using the ratio of probabilities (Eq. 2 
above) and the threshold r we say we are using "relative" probabilities. Notice that using 
the relative probabilities produces slightly better detection rates on the testing data. 

Because our experimental setup only involves measurements from normal computer 
users, the use of our ratio of probabilities makes sense in our experiments, since it defines 
"rare for User A" relative to the baseline of other computer users operating normally. 
However, it is likely that the behavior of intruders, even insiders working at the same 
facility, may be quite different from normal computer usage (unfortunately we do not yet 
have such data to analyze). For example, an intruder might do something that is rare in 
general, and hence Equation 1 above might not produce a value less than the setting for 
the threshold r. 
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This argument suggests that both relative and absolute probabilities should be used in the 
Winnow algorithm (Table 2).   We have done a preliminary experiment where a mini- 
alarm (Step 2b of Table 1) is sounded if either the absolute or relative versions of the 
Winnow algorithm sound an alarm. In this experiment (using W=1200 sec), the test-set 
detection rate was 97.3% for this combined approach versus 94.7% for "relative-only" 
approach and 93.6% for the "absolute-only" version; this detection rate is achieved with 
less than one false alarm per day per user (one false alarm every three days actually, 
which is the same as in the "absolute-only" version, while the "relative-only" version has 
one false alarm about every four days). 

Figure 2. Using Absolute vs. Relative Probabilities 
to Trigger Mini-Alarms 
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Impact of the Amount of Training and Tuning Data Used 

In the experiments reported so far, we have been using three weeks of training data, two 
weeks of tuning, and two weeks of testing data per user. In this section we evaluate the 
impact of spending less time training and tuning; the length of the testing period is less 
relevant since its role is to represent future behavior after the IDS's have been trained. 
Figure 3 reports the detection rate on the test data, averaged over the ten experimental 
subjects, for various configurations of training and tuning durations (as in all our curves, 
in all cases our specified false-alarm rate on the testing data is met).   "Days" in this 
figure refers to "days of data" and not "days of CPU time." Each data point is the 
average of the results obtained when using "relative" and "absolute" probabilities (in two 
separate runs) to trigger mini-alarms. To create this figure we use only three days of 
testing data per user. In Figure 3 the right-most "diamond" marks the results that 
correspond to those in Figure 2, except here the test set contains l/3rd as much data (and 
this smaller test set seems slightly easier than the two-week-long version, possibly 
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because users' behavior varies less over a shorter period of time). 

There is a slightly increasing trend in detection rate on the testing data as more time is 
spent training and tuning, but even with only one day of training and one of tuning, 
performance is good. This suggests that a system can be fielded after only a very short 
training period; in addition, performance of our algorithm is likely to increase as 
additional measurements are gathered (since we continually retrain). 

Figure 3.   Detection Rates as Function of Training Period 
(W = 300 sec) 
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We have found that unless more than a week of data is used for tuning, Table 1 's 
thresholdmini should be constrained to be equal to 1 and Table l's algorithm should only 
tune the value of thresholdfuii- Otherwise there are too many degrees of freedom and not 
enough tuning data, which leads to over fitting the tuning data and poor performance on 
the testing data. More specifically, when less than a week of tuning data is used, the 
resulting false-alarm rate on the testing data occasionally exceeds our goal of one per day 
per user, even though in its tuning phase Table 1 's algorithm can find setting for the two 
thresholds that produce no false alarms on the tuning dataset. 

When there is sufficient tuning data (e.g., two weeks worth), tuning both parameters 
occasionally leads to some improvement in detection rates on the testing data. However, 
it is not clear that tuning thresholdmini is beneficial, due to the increased risk of over 
fitting, and for a fielded system it would be reasonable to solely tune thresholdfuii. 

Impact of the "Memory Length" of the Derived Features 

Table 3 shows that the features that use the last N measurements of a Windows 2000 
property play an important role. Figure 4 illustrates the performance of Table l's 
algorithm when we use features that use at most the last 1,10, 100, or 1000 
measurements, respectively, of the Window 2000 properties (Appendix A) we monitor. 
The Y-axis is the test-set detection rate and in all cases the false-alarm rate meets our 
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goal of no more than one per user per workday.  Figure 4's data is from the case where 
W = 300 seconds; 15 days of training data, 3 of tuning, and 3 of testing are used for each 
experimental subject. 

Figure 4.   Detection Rate as Function of Number of 
Previous Values Used (W = 300 sec) 
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Figure 4 shows that there is an advantage in considering features that have longer 
"histories."  However, the cost of a longer history is that more data needs to be collected 
to define a feature value. That is, if histories can go back as far as 1000 seconds (a little 
over 15 minutes), then it will take 1000 seconds after an intrusion until all of the feature 
values are due solely to the intruder's behavior. It appears that limiting features to at 
most the last 100 seconds of measurements is a good choice (a minor future research task 
would be to more finely sample the X-axis of Figure 2, rather than only using history 
lengths that are powers often). 

Impact of the Number of Users in the Training Pool 

The experiments reported so far always involved ten subjects in the pool of "insiders" 
used during training. The question naturally arises as to the impact of having smaller (or 
larger) local workgroups of "insiders." Figure 5 presents test-set results that partially 
address this question. Three times we trained and tuned using random subsets of five and 
of seven of our pool often insiders; in this experiment we only tuned with only one day's 
worth of data and also only tested with a (different) day's worth of data. We also 
evaluated our learned models in these six experiments using our standard set of 
"outsiders" data. As is standard in our experiments, for all of the results in Table 5, the 
false-alarm rate is less than one per day per user. 
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Figure 5.   Detection Rate as Function of Number of 
Members of the Local Work Group (W = 300 sec) 

S" 100 

ra 95 oc 
c o 
*3 90 
O 
0) 
*J 

0) 
Q 

85 

Outsiders 

Insiders 

6 8 10 

Number of Members in Local Group 

Figure 5 indicates that there is a slight tendency to do better as the number of users in the 
local work group increases, while the detection rate on the outsiders is approximately 
constant. Our initial hypothesis was that it would be easier to learn to detect insider 
intrusions with smaller numbers of insiders, but that detecting outsider intrusions would 
be harder, since the learning algorithm had to deal with fewer types of behavior during 
the training process. However, the experimental results do not match this hypothesis. It 
is also unclear why there is such a large gap between the detection rates for insiders and 
outsiders on the left half of Figure 5. One way to resolve these mismatches is to perform 
a larger experiment, say with ten times as many subjects, and it certainly is the case that 
an "insiders" pool containing only ten users is not very large for "scaling up" 
experiments. 

Tables 5 and 6 that are described in the next section show that the individual variance in 
intrusion-detection rates is high; hence, experiments with small numbers of subjects can 
be greatly impacted by the particular make-up of their subject pools. We include the 
results of Figure 5 in this final report not because they provide any deep insights into the 
strengths and weaknesses of Table 1 's algorithm, but rather as an illustration of what 
kinds of experiments should be done with this algorithm if data can be obtained from a 
larger number of people. 

Individual Differences for Table 1's Algorithm 

So far we have reported results average over our pool of 10 insiders and 6 outsiders. It is 
interesting to look at results from individual experimental subjects. Table 4 reports how 
often User Y was not detected when "intruding" on User^Ts computer. For example, the 
cell <row=User6, column=U5> says that the probability of detection is 0.35 when User 
5 operates on User 6's computer for 1200 seconds. (The rightmost column is the 
detection rate when outsiders operate on each insider's computer.) 
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Table 5.  Fraction of Times that User Y Successfully Intruded on User X's Machine 
(using absolute probabilities and W = 1200 sec) 

User 0 Ul U2 U3       U4 U5       U6       U7       U8       U9    RowAve    Outs 

X=UserO 34% 40% 0% 53% 0% 0% 0% 37% 0% 19% 11% 

Userl 1% 2% 1% 0% 0% 0% 0% 0% 3% 1% 0% 

User2 7% 78% 0% 1% 1% 0% 0% 1% 24% 12% 0% 

User3 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 5% 

User 4 100% 0% 8% 0% 0% 0% 0% 0% 0% 16% 7% 

User5 0% 0% 0% 0% 0% 0% 0% 4% 0% 0% 2% 

Us er 6 0% 0% 0% 0% 0% 35% 0% 8% 6% 6% 12% 

Userl 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 

User8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

User9 0% 4% 2% 0% 0% 12% 0% 0% 0% 2% 4% 

ColAve  = - 12% 13% 6% 0% 6% 5% 0% 0% 6% 4% 5% 4% 

Table 6.  Fraction of Times that User Y Successfully Intruded on User X's Machine 
(using relative probabilities and W = 1200 sec) 

User 0 Ul U2       U3 U4 U5 U6       U7 U8 U9    RowAve Outs 

X=User0 0% 7% 0% 23% 0% 0% 0% 41% 0% 7% 15% 

Userl 5% 1% 0% 35% 0% 0% 0% 0% 2% 6% 0% 

User2 0% 0% 0% 26% 0% 0% 0% 0% 5% 4% 0% 

Us er 3 14% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 

Us er 4 2% 0% 4% 0% 0% 0% 0% 0% 4% 4% 0% 

UserS 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 20% 

User6 0% 0% 0% 0% 0% 0% 0% 45% 75% 14% 2% 

Userl 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 

User8 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 2% 

User9 9% 60% 16% 1% 0% 43% 6% 0% 25% 17% 3% 

ColAve 3% 7% 5% 0% 9% 5% 1% 0%  12%  10% 5% 5% 

20 



Given that the overall detection rate is about 95% (i.e., only 5% of 1200-sec intrusions do 
not sound alarms), one might expect that most of the individual penetration rates would 
range from, say, 2% to 10%. However, the results are much more skewed. In most 
cases, all the attempted intrusions are detected - the majority of cells in Table 5 contains 
0's (in fact we report "penetration" rates rather than detection rates in this table because 
otherwise all of the 100%'s would be visually overwhelming). But in several cases 
(highlighted with bold font) a user is frequently not detected when operating on another 
user's computer. 

Table 6 repeats Table 5, with the only difference being that the results were produced 
using relative probabilities in the Winnow algorithm. Interestingly, the easily confused 
user-pairs are generally very different in the two cases (cells that have high values in both 
tables are underlined in Table 6); recall that earlier in this section we present results of a 
successful combined approach that uses both the absolute and relative probabilities. 

One implication of the results in Tables 5 and 6 is that one could run experiments like 
these on some group of employees, and then identify for which ones their computer 
behavior is sufficiently distinctive that Table l's algorithm provides them effective 
protection. For example, Users 1, 3, 7, and 8 in Tables 5 and 6 detect almost all of the 
intrusion attempts on their computers. 

Comparison to the NaTve Bayes Algorithm 

A successful algorithm on many tasks is the Naive Bayes algorithm [MITCHELL97]. We 
applied this algorithm in the same experimental setup as used to evaluate Table 1 's 
algorithm. However, the best results we have been able to obtain (for W = 1200 seconds) 
are a 59.2% detection rate with an average of 2.0 false alarms per day per user, which 
compares poorly to Table l's algorithm's results, in the identical scenario, of a 93.6% 
detection with an average of 0.3 false alarms per day per user. Nevertheless, there are 
some aspects of the Naive Bayes algorithm for which it makes sense to consider 
integrating into Table l's algorithm. This topic is further discussed in Section 5, Future 
Work. 

4. Experiments with Keystroke Monitoring 

Section 3's experiments did not involve any direct measurements of user's typing 
behavior. In Section 4 we investigate how well individual differences in typing behavior 
can play an identifying role. Monrose and Rubin [MONROSE97] performed similar studies 
that investigated using keystroke dynamics as an authentication mechanism, but here we 
use keystroke behavior as an aid for intrusion detection. 
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We implemented an experimental approach that works as follows: 

1. Use 50,000 keystrokes for each user to train a separate statistical model for each user. 
(On average, users type 5000 keystrokes per working day, so this is about two weeks 
of activity.) 

2. Use another 50,000 keystrokes to tune some parameters (explained further below), 
separately for each user. The tuning data is collected from non-overlapping days than 
those used to create the training data. (Similarly, the testing data described below 
also comes from days separate from those where the training and tuning data were 
collected.) 

3. Use a third set of 30,000 keystrokes as a test set. As emphasized in Section 3, it is 
extremely important for proper experimental methodology that one uses separate data 
to tune parameters and to estimate future accuracy. "Tuning on the test set" will 
usually lead to overestimates of future accuracy. 

The basic algorithm we developed works as follows: 

1. Compute the probability of the last three keystrokes (including the time taken 
between keystrokes and the time each key was held down before being released), 
given the model learned for the given machine's normal user. The specific 
probability that we measure is explained below. 

2. If this probability is lower than some threshold, T, then "mark" this keystroke. 

3. If there are more than N marks in the last W keystrokes, raise an alarm. 

Our algorithm automatically chooses the T and N settings for each person and for each 
W, based on optimizing accuracy on the tuning data set that was mentioned above, while 
holding the rate of false alarms to less than one per work day per user (actually, less than 
one per 5000 keystrokes, since that is the average number of keystrokes our users typed 
per day). 

The probability that we measure is based on the three previous keystrokes and timings 
related to them: 

Prob( current  keystroke = Key3 and 
previous keystroke = Key2 and 
two-ago keystroke = Key1 and 
time between K2 and K3 = Interval23 and 
time between K1 and K2 = Interval12 and 
time K3 was down = Downtime3 

K3 is the most recent keystroke, K2 the middle keystroke, and K1 the earliest. 
If there has not been a new keystroke in the last two seconds an "idle" keystroke is 
inserted, and we ignore in our experiments all sequences of three successive "idles.' 
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When an experimental subject has not typed anything for 30 minutes, the buffer 
containing the last W keystrokes is cleared and no diagnosis will be made until a fresh 
run of W keystrokes occurs. 

We compressed the possible keystrokes into 13 groups (lower-case alphabetic; upper- 
case alphabetic; numeric; F-key; white space; left-hand shift, control, or alt; right-hand 
shift, control, or alt; backspace and delete; numeric keypad; punctuation; math symbol; 
"other;" and idle) for keystroke 3, eight groups for keystroke 2, and three for keystroke 1 
(idle, alphabetic, and other).    We reduce the number of groups for the earlier keystrokes 
in order to reduce the size of the joint probability distribution that we need to estimate. 

The above probability formula requires inter-key times and key-down times to be 
discretized. We discretized the time between keystroke 2 and keystroke 3 into these five 
bins: < 20 msec, 20-80 msec, 80-150 msec, 150-750 msec, and > 750 msec. We 
discretized the time between keystroke 1 and keystroke 2 into three bins: < 80 msec, 80- 
750 msec, and > 750 msec. We discretized key-down times into four bins: < 35 msec, 
between 35-75 msec, 75-175 msec, and > 175 msec. We choose these thresholds by 
creating histograms using some of the training data and then visually inspecting these 
histograms. 

Hence each user's probability table involves 13x8x3x5x3x4= 18,720 cells. We 
initialize all of these cells to 1 (to insure that we never estimate probabilities of zero) and 
then simply fill each user's probability table by processing that user's training data and 
counting how often each possible combination occurs. 

Figure 6 illustrates the probability we compute (though, to reduce clutter, the down time 
for keystroke 3 is not shown). Each node represents a possible value for one of the 
random variables (K1, Intervall2, etc) appearing in the probability that we estimate. A 
path through this graph corresponds to an entry in our large joint probability distribution; 
the path with thick lines and arrow heads is one such path, where, say, the user first 
pressed the letter 'a', quickly followed by pressing the left control key, and then after 500 
msec pressed the F5 key. Our probability table simply contains the estimated probability 
of following each possible path, going left-to-right, through this graph. 

Our current accuracy results on the test data set, as a function of W, appear in Figure 7. 
When measuring accuracies on the testing data, we use non-overlapping windows (of W 
keystrokes) in order to reduce the correlation between successive samples. 
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Figure 6.  Visualizing the Three-Keystroke Probability 
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Analogous to our use of both absolute and relative probabilities in Section 3.3, here we 
consider both using directly the probability illustrated by Figure 5 and also using the ratio 
of User X's probability of producing the last three keystrokes (including timing) divided 
by the general population's probability of doing so. For keystroke analysis, looking at 
relative probabilities is clearly greatly advantageous. This makes sense when one 
considers that some keystroke combinations - for example, lower-case letter, followed by 
backspace, and then followed by a capital letter - are rare for most users and it seems 
reasonable to normalize with respect to "background" rates across the population. 

Figure 7.  Detection Rates of Keystroke Analysis 
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We are encouraged that we can recognize a sizable fraction of intrusions (defined as User 
X typing on user Fs computer) which such a low false-alarm rate, especially since we are 
currently only using in these experiments one type (i.e., keystrokes) of the many types of 
data we have collected. Of course an intruder can do a lot of damage in, say, 160 
keystrokes, but we believe that detecting with large windows can still be useful; it 
certainly is better than looking at yesterday's log files. 

Recall that our algorithm chooses the best parameter settings (T and N). We have 
expended this to find the optimal pair, Ti & Ni and T2 & N2, during the tuning process. 
If either settings recommend raising an alarm, then an alarm is raised. Figure 8's top- 
most line shows the performance of this version (the other two lines are repeated from 
Figure 7). This variant produces an improvement of 2-7 percentage points in the 
intrusion-detection rate on the test set. 

Figure 8.   Detection Rate Using the Best Pair of Detectors 
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A solution to the above-mentioned weakness of having to wait W keystrokes before an 
alarm can be sounded, is to have a collection of IDS's for each user, where each 
individual IDS uses a different value for W - say 10, 20, 40, 80, 160, and 320 seconds. 
One would need to carefully choose which and how many individual IDS's to combine in 
order to insure that the full ensemble did not produce too many false alarms, but the 
advantage is that intrusions would be detected as early as possible. We have performed 
some very preliminary experiments, whose results however are not described in this 
report, that indicate that such an ensemble-of-IDS's approach can work well. 

We have not yet combined any keystroke-based "intrusion detector" with the algorithm 
of Sections 2 and 3; doing so is a topic for future research. One way to accomplish this 
would be to use the probability described in this section as one more feature in the 
Winnow algorithm. 
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5. Future Work 

Before concluding the final report on out ATIAS project, we discuss a few possible 
extensions to the work reported above that have not yet been fully discussed. An obvious 
extension is to obtain and analyze data from a larger number of users, as well as data 
from a collection of server machines. And of course it would be greatly beneficial to 
have data gathered during actual intrusions, rather than simulating them by replaying one 
user's measurements on another user's computer. Among other advantages, having data 
from a larger pool of experimental subjects would allow "scaling up" issues to be 
addressed, statistically justified confidence intervals on results to be produced, and 
parameters to be better tuned (including many for which we have "hard-wired in" values 
in our current experiments). 

When we apply the Winnow algorithm during the training phase (Step 1 in Table 1), we 
get remarkable accuracies. For example, out of 3,000,000 seconds of examples (half that 
should be called an intrusion and half that should not), we consistently obtain numbers on 
the order of only 150 missed intrusions and 25 false alarms, and that is from starting with 
all features weighted equally. Clearly the Winnow algorithm can quickly pick out what 
is characteristic about each user and can quickly adjust to changes in the user's behavior. 
In fact, this rapid adaptation is also somewhat of a curse (as previously discussed in 
Section 2), since an intruder who is not immediately detected may soon be seen as the 
normal user of a given computer. This is why we look for N mini-alarms in the last W 
seconds before either sounding an alarm or calling the recent measurements normal and 
then applying Winnow to these measurements; our assumption is that when the normal 
user changes behavior, only a few mini-alarms will occur, whereas for intruders the 
number of mini-alarms produced will exceed N. Nevertheless, we still feel that we are 
not close to fully exploiting the power of the Winnow algorithm on the intrusion- 
detection task. With more tinkering and algorithmic variations, it seems possible to get 
closer to 99% detection rates with very few false alarms. 

In Section 2's Winnow-based algorithm we estimate the probability of the current value 
for a feature and then make a simple "yes-no" call (see Eq. 1), regardless of how close 
the estimated probability is to the threshold. However, it seems that an extremely low 
probability should have more impact than a value just below the threshold. In the often- 
successful Naive Bayes algorithm, for example, actual probabilities appear in the 
calculations, and it seems worthwhile to consider ways of somehow combining the 
weights of Winnow and the actual (rather than thresholded) probabilities. 

In our main algorithm (Table 1) we did not "condition" the probabilities of any of the 
features we measured.  Doing so might lead to more informative probabilities and, 
hence, better performance. For example, instead of simply considering 
Prob(File Write Operations/sec), it might be more valuable to use 
Prob(File Write Operations/sec | MS Word is using most of the recent cycles), 
where '|' is read "given." We have done some preliminary work on choosing the best 
two conditions for each of our features, but deferred that work when we discovered how 
well the Winnow algorithm (which was not part of our project proposal) worked. 
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In none of the experiments of this report did we mix the behavior of the normal user of a 
computer and an intruder, though that is likely to be the case in practice. It is not trivial 
to combine two sets of Windows 2000 measurements in a semantically meaningful way 
(e. g., one cannot simply add the two values for each feature or, for example, CPU 
utilizations of 150% might result). However, with some thought it seems possible to 
devise a plausible way to mix normal and intruder behavior. An alternate approach 
would be to run our data-gathering software while someone is trying to intrude on a 
computer that is simultaneously being used by another person. 

In the results reported in Section 3, we tune parameters to get zero false alarms on the 
tuning data, and we found that on the testing data we were able to meet our goal of less 
than one false alarm per user per day (often we obtained test-set results more like one per 
week). If one wanted to obtain even fewer false alarms, then some new techniques would 
be needed, since our approach already is getting no false alarms on the tuning set. One 
solution we have explored is to tune the parameters to zero false alarms, and then to 
increase the stringency of our parameters - e. g., require 120% of the number of mini- 
alarms as needed to get zero tuning-set false alarms. More evaluation of this and similar 
approaches is needed. 

We have also collected Windows 2000 event-log data from our set of 16 Shavlik 
Technologies employees. However we decided not to use that data in our experiments 
since it seems one would need to be using data from people actually trying to intrude on 
someone else's computer for interesting event-log data to be generated. Our approach for 
simulating "intruders" does not result in then generation of meaningful event-log entries 
like failed logins. We also collected mouse-movement data from users, but due to some 
initial technical difficulties we did not obtain that until late in the project and did not have 
time to use it to augment the keystroke-analysis experiments of Section 4. 

Another type of measurement that seems promising to monitor are the specific IP 
addresses involved in traffic to and from a given computer. Possibly interesting variables 
to compute include the number of different IP addresses visited in the last N seconds, the 
number of "first time visited" IP addresses in the last N seconds, and differences between 
incoming and outgoing IP addresses. 

A final possible future research topic is to extend the approaches in this report to local 
networks of computers, where the statistics of behavior across the set of computers is 
monitored. Some intrusion attempts that might not seem anomalous on any one 
computer, may appear highly anomalous when looking at the behavior of a set of 
machines. 

27 



6. Conclusion 

The goal of this project is to continually gather and analyze hundreds of fine-grained 
measurements about Windows 2000 system performance, such as network traffic, 
identity of the current programs executing, and the user's typing behavior (a full list 
appears in Appendix A). Our scientific hypothesis is that a properly chosen set of 
measurements can provide a "fingerprint" that is unique to each user, serving to 
accurately distinguish appropriate use of a given computer from misuse. 
Section 3's and 4's empirical evaluation of the algorithms that we developed indicate it is 
possible to accurately distinguish between the normal use by the owner of a given 
computer and use by someone else.   We also provide some insights into which system 
measurements play the most valuable roles in creating statistical profiles of users (Tables 
3 and 4, plus Appendix B).   We have been able to get high intrusion-detection rates 
(95%) and low false-alarm rates (less than one per day per computer) without "stealing" 
too many CPU cycles (less than 1%). We believe it is of particular importance to have 
very low false-alarm rates; otherwise the warnings from IDS will soon be disregarded. 
Our project demonstrates that computer security can be enhanced by monitoring each 
user's (or server's or intelligent software agent's) behavior, learning statistical models 
based on these measurements, and then using these statistical models to accurately detect 
anomalous behavior, which might be indicative of insider misuse. 

Specific key lessons learned in this project are that it is valuable to: 

• consider a large number of different properties to measure, since many different 
features play an important role in capturing the idiosyncratic behavior of at least 
some user (see Table 4) 

• continually reweight the importance of each feature measured (since users' 
behavior changes) 

• look at features that involve more than just the instantaneous measurements 
(e. g., averages over the last 100 seconds, differences between the current 
measurement and the average over the last 10 seconds - see Figure 4) 

• tune parameters on a per-user basis 
(e. g., the number of "mini alarms" in the last N seconds that are needed 
to trigger an actual alarm) 

• tune parameters on "tuning" datasets and then estimate "future" performance by 
measuring detection and false-alarm rates on a separate "testing" set (if one only 
looks at performance on the data used to train and tune the learner, one will get 
unrealistically high estimates of future performance; for example, we are always 
able to tune to zero false alarms) 

• look at the variance in the detection rates across users; for some, there are no or 
very few missed intrusions, while for others a sizable number of intrusions are 
missed (see Tables 5 and 6) - this suggests that for at least some users (or servers) 
our approach can be particularly highly effective 
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An anomaly-based IDS should not be expected to play the sole intrusion-detection role, 
but such systems nicely complement IDS that look for known patterns of abuse. New 
misuse strategies will always be arising, and anomaly-based approaches provide an 
opportunity to detect them even before the internal details of the latest intrusion strategy 
is fully understood. 

As final comment, we wish to note that the algorithms presented in this report do not 
apply solely to Windows 2000 measurements gathered on personal workstations.   Other 
than the keystroke-analysis algorithm of Section 4, our approach directly applies to 
Windows-based servers. And to apply to other operating systems or even to specific 
applications (e.g., a Java-based logistics planner, intelligent software agents, or some 
important database program) one need only adapt the code that measures specific system 
(or application) properties periodically; the data-analysis and model-building algorithms 
can then be applied directly to such data. 
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Appendix A - List of Windows 2000 Properties Measured 

This appendix reports the 207 Windows 2000 properties that we measure. Additional 
documentation about many of them is available by running Performance Monitor 
(perfmon) in Windows 2000. 

Number of Open Windows 
Open Top-Level Windows 

File Read Operations/sec 
File Read Bytes/sec 
File Write Operations/sec 
File Write Bytes/sec 
File Control Operations/sec 

Context Switches/sec 
System Calls/sec 

// Number of windows open. 
// Number of windows open, not counting children. 

% Total Processor Time 
% Total User Time 
% Total Interrupt Time 
% Total Privileged Time 

// % of non-idle processor time spent in user mode 

Total Interrupts/sec 
Data Maps/sec 

Number of 
Number of 
Number of 
Number of 
Number of 
Number of 

Processes 
Threads 
Events 
Semaphores 
Mutexes 
Sections 

Cache Faults/sec 
Pages/sec 

System Driver Total Bytes 
System Driver Resident Bytes 
% Physical Memory In Use 
% Virtual Memory In Use 

// Bytes of virtual memory in use by device drivers 
// Working set of the above 

Bytes Received/sec 
Bytes Transmitted/sec 

Errors Logon 
Errors Access Permissions 
Errors Granted Access 

// Count of illegal file accesses 
// Count of denied accessed to files later opened 

Files Opened Total 
Files Open 

// Files opened by system 
// Number of files current open 

Server Sessions 
File Directory Searches 
Pool Paged Failures // Number of times allocations from paged pool failed 
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Logon/sec 
Logon Total 

Bytes Total/sec 
File Data Operations/sec 
Packets/sec 
Packets Received/sec 
Packets Transmitted/sec 

Read Bytes Paging/sec 
Read Bytes Non-Paging/sec 
Read Bytes Cache/sec 
Read Bytes Network/sec 
Read Packets/sec 
Reads Denied/sec 

Write Bytes Paging/sec 
Write Bytes Non-Paging/sec 
Write Bytes Cache/sec 
Write Bytes Network/sec 
Write Packets/sec 
Writes Denied/sec 

Disk Reads/sec 
Disk Writes/sec 
Disk Transfers/sec 
Disk Read Bytes/sec 
Disk Write Bytes/sec 
Disk Bytes/sec 

Network Errors/sec 
Server Reconnects 
Connects Windows NT 
Server Disconnects 
Server Sessions Hung 

// Number of active sessions that are timed out 
// Number of connections to Windows NT computers 
// Number of times Redirector disconnected 

TCP Connections Active 
TCP Connections Passive 
TCP Segments/sec 
TCP Connections Reset 
TCP Segments Received/sec 
TCP Segments Sent/sec 
TCP Connections Established 

Datagrams Received Address Errors 
Datagrams Forwarded/sec 
Datagrams Received Header Errors 
Datagrams/sec 
Datagrams Sent/sec 
Datagrams Received/sec 
Datagrams Received Unk Prot 

UDP Datagrams/sec 
UDP Datagrams Sent/sec 
UDP Datagrams Received/sec 
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UDP Datagrams no port/sec 
UDP Datagrams Received errors 

ICMP Messages Received/sec 
ICMP Messages Sent/sec 
ICMP Messages/sec 

Current Commands 
Total RAS Connections 

// Number of commands in Redirector queue 
// RAS = Remote Access Server 

Current Outgoing Phone Calls 
Current Incoming Phone Calls 

Bytes Printed/sec 
Number of Print Jobs 

_total: % Processor Time 
_total: Handle Count 
_total: Working Set 

// Current number of jobs in a print queue 

// Summed over all processes 

// The remaining measurements relate to commonly run Windows 2000 programs 

WinWord: % Processor Time 
WinWord: Handle Count 
WinWord: Working Set 

Excel: % Processor Time 
Excel: Handle Count 
Excel: Working Set 

Powerpnt: % Processor Time 
Powerpnt: Handle Count 
Powerpnt: Working Set 

MSaccess: % Processor Time 
MSaccess: Handle Count 
MSaccess: Working Set 

Outlook: % Processor Time 
Outlook: Handle Count 
Outlook: Working Set 
Outlook: Elapsed Time 

msimn: % Processor Time 
msimn: Handle Count 
msimn: Working Set 

Notepad: % Processor Time 
Notepad: Handle Count 
Notepad: Working Set 
Notepad: Elapsed Time 

// Outlook express 

Wordpad 
Wordpad 
Wordpad 
WordPad 

% Processor Time 
Handle Count 
Working Set 
Elapsed Time 
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MSdev: % Processor Time 
MSdev: Handle Count 
MSdev: Working Set 

Explorer: % Processor Time 
Explorer: Handle Count 
Explorer: Working Set 

IExplorer: % Processor Time 
IExplorer: Handle Count 
IExplorer: Working Set 
Netscape: % Processor Time 
Netscape: Handle Count 
Netscape: Working Set 

Eudora: % Processor Time 
Eudora: Handle Count 
Eudora: Working Set 

// Web browers 

// A popular mail program 

vb5: % Processor Time 
vb5: Handle Count 
vb5: Working Set 
vb6: % Processor Time 
vb6: Handle Count 
vb6: Working Set 

// Visual Basic 

jview: % Processor Time 
jview: Handle Count 
jview: Working Set 
wjview: % Processor Time 
wjview: Handle Count 
wjview: Working Set 
java: % Processor Time 
Java: Handle Count 
Java: Working Set 

// Java executors 

notes: % Processor Time 
notes: Handle Count 
notes: Working Set 

// Lotus notes 

SPOOLSS: % Processor Time 
SPOOLSS: Handle Count 
SPOOLSS: Working Set 

RPCSS: % Processor Time 
RPCSS: Handle Count 
RPCSS: Working Set 

LSASS: % Processor Time 
LSASS: Handle Count 
LSASS: Working Set 

// The print spooler 

// PRC = remote procedure call 

// LSASS = Local Security Authority Subsystem 

TCPSVCS:   %  Processor Time 
TCPSVCS:   Handle Count 
TCPSVCS:   Working  Set 

// TCP server 
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AT: % Processor Time 
AT: Handle Count 
AT: Working Set 

CMD 
CMD 
CMD 

% Processor Time 
Handle Count 
Working Set 

COMMAND: % Processor Time 
COMMAND: Handle Count 
COMMAND: Working Set 

FINDSTR: % Processor Time 
FINDSTR: Handle Count 
FINDSTR: Working Set 

FINDFAST 
FINDFAST 
FINDFAST 

% Processor Time 
Handle Count 
Working Set 

FTP: % Processor Time 
FTP: Handle Count 
FTP: Working Set 
FTP: Elapsed Time 

PRINT: % Processor Time 
PRINT: Handle Count 
PRINT: Working Set 
PRINT: Elapsed Time 

// Runs commands AT a specified time 

// The Windows command-line interpreter 

// Command.com 

// Searches for strings in files 

// Used to index Microsoft Office documents 

// FTP = file transfer protocol 

// Prints a text file 

CONTROL: % Processor Time 
CONTROL: Handle Count 
CONTROL: Working Set 

SYSTEM 
SYSTEM 
SYSTEM 

% Processor Time 
Handle Count 
Working Set 

// A kernel process 

// See how much cpu time has been expended by various other programs. 

Calc:   Elapsed Time 
TASKMGR:   Elapsed Time 
QuickTimePlayer:   Elapsed 
Mplayer2:   Elapsed Time 
Realplay:   Elapsed Time 
AcroRd32:   Elapsed Time 
WinZip32:   Elapsed Time 

// Windows' built-in calculator 
// Task manager 

Time // Apple's Quicktime media player 
// Microsoft's media player 
// Real Audio's media player 
// Adobe's viewer of PDF 
// Compress and uncompress files 
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Appendix B - The Top 50 Measurements for One User 

Below are the top fifty (plus a few more due to ties) weighted features for a sample user, 
who is a secretary and is User #4 in Tables 5 and 6. These results are from the scenario 
of using relative probabilities (see Section 3.3). Also, unlike Table 3, in this appendix a 
measured Windows 2000 property appears at most once in order to increase readability; 
whichever derived feature has the most weight is reported, with ties being broken in favor 
of derived features that appear earliest in Section 2's list of derived features. 

Best  #1 

File Control Operations/sec 
Average of Previous 100 Values 

Bytes Received/sec 
Average of Previous 10 Values 

Number of Print Jobs 
Average of Previous 10 Values 

Excel: Working Set 
Difference between Current and Average of Last 10 

LSASS: Working Set 
Average of Previous 100 Values 

CMD: Handle Count 
Difference between Current and Average of Last 100 

Best #7 (weight = highest weight / 2) 

Number of Semaphores 
Average of Previous 10 Values 

Errors Access Permissions 
Average of Previous 10 Values 

TCP Segments Received/sec 
Average of Previous 100 Values 

UDP Datagrams no port/sec 
Difference between Current and Average of Last 100 

_total: Handle Count 
Average of Previous 100 Values 

Excel: Handle Count 
Difference between Current and Average of Last 100 

Powerpnt: % Processor Time 
Average of Previous 100 Values 

LSASS: Handle Count 
Difference between Current and Average of Last 10 

TASKMGR: Elapsed Time 
Average of Previous 10 Values 

Best #16 (weight = highest weight / 4) 

Number of Open Windows 
Difference between Current and Average of Last  100 

% Total Processor Time 
Difference  from Previous Value 

% Total Interrupt Time 
Average of  Previous  100 Values 

Number of Threads 
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Average of Previous  10 Values 
Write Packets/sec 

Average of Previous  100 Values 
Powerpnt: Handle Count 

Average of Previous  10 Values 
Outlook: % Processor Time 

Average of Previous  10 Values 
Outlook: Working Set 

Difference between Current and Average of Last  10 
CMD: Working Set 

Average of Previous  10 Values 
SYSTEM: Working Set 

Actual Value Measured 
AcroRd32: Elapsed Time 

Difference between Current  and Average  of  Last  10 

Best #27   (weight  = highest weight  /   8) 

% Physical Memory In Use 
Average of Previous 10 Values 

TCP Connections Reset 
Average of Previous 10 Values 

Datagrams/sec 
Average of Previous 10 Values 

Explorer: Handle Count 
Difference between Current and Average of Last 10 

Explorer: Working Set 
Difference between Averages of Prev 10 and Prev 100 

Best #32 (weight = highest weight / 16) 

Open Top-Level Windows 
Difference between Current and Average of Last 10 

Number of Events 
Difference between Averages of Prev 10 and Prev 100 

Number of Mutexes 
Average of Previous 10 Values 

Cache Faults/sec 
Average of Previous 10 Values 

System Driver Resident Bytes 
Average of Previous 10 Values 

% Virtual Memory In Use 
Difference between Current and Average of Last 10 

Files Opened Total 
Average of Previous 100 Values 

Connects Windows NT 
Difference between Current and Average of Last 10 

Datagrams Received Address Errors 
Average of Previous 10 Values 

_total: Working Set 
Average of Previous 10 Values 

WinWord: % Processor Time 
Difference between Current and Average of Last 10 

Excel: % Processor Time 
Difference between Current and Average of Last 10 
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Outlook: Handle Count 
Average of  Previous  100 Values 

intrude: % Processor Time 
Average of Previous 100 Values 

Best #46 (weight = highest weight / 32) 

File Write Operations/sec 
Difference between Averages of Prev 10 and Prev 100 

File Write Bytes/sec 
Average of Previous 100 Values 

Context Switches/sec 
Difference between Current and Average of Last 100 

Number of Sections 
Difference between Current and Average of Last 100 

TCP Connections Passive 
Difference between Averages of Prev 10 and Prev 100 

Powerpnt: Working Set 
Difference between Current and Average of Last 10 

SYSTEM: % Processor Time 
Average of Previous 10 Values 

SYSTEM: Handle Count 
Difference between Current and Average of Last 100 

WinZip32: Elapsed Time 
Difference between Current and Average of Last 10 
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